Frequency of Vancomycin-Resistant Enterococci isolated from clinical samples of Shahid Mohammadi hospital through the E-test method

Z. Ghalandarzadeh Daryaii, MSc Student 1 S. Javadpour, PhD 2 M. Kargar, PhD 3
MSc Student of Microbiology 1 Infectious Disease Research Center, Associate Professor Department of Microbiology 2 Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. Associate Professor Department of Microbiology 3 Islamic Azad University, Jahrom Branch, Jahrom, Iran.

(Received 20 July, 2013 Accepted 20 Nov, 2013)

ABSTRACT

Introduction: Enterococci are gram-positive coccoid bacteria that are present in the normal flora of the gastrointestinal tract in human, and many mammals and birds, as well as the environment. Vancomycin-resistant Enterococci (VRE) are a major and rising problem in hospitals throughout the world. The present study aimed to investigate the frequency of strains of Enterococci and the pattern of drug sensitivity in clinical samples.

Methods: This cross-sectional study was conducted on 54 samples of Enterococcus in 2012. The diagnostic kit of RapID STR System was used for identification of Enterococcus species. Antibiotic sensitivity was determined by Kirby-Bauer disk diffusion method according to CLSI instructions. E-Test was used to determine Vancomycin MIC.

Results: Of the 54 isolates of Enterococci, the obtained strains included 38 E. faecalis (70.40%), 10 E. faecium (18.50%), 3 E. hirae (5.55%), one E. mundii (1.85%), one E. durans (1.85%), and one E. avium (1.85%). Thirteen strains had vancomycin MIC>32 \(\mu \)g/mL. They had the highest resistance to gentamicin and cephalexin by 70.40% and the lowest resistance to linezolid by 3.70%. The highest resistant strain was obtained from urine (76.9%) and internal ward (46.1%).

Conclusion: The substantial abundance of VRE isolated from the study area necessitates the performance of controlling measures.

Key words: Vancomycin-Resistant Enterococcus - Antibiotic - Hospital

Introduction:

The word Enterococcus is originated from the Greek words of enteron meaning intestine and kokkus meaning grain (1). Enterococci are fermentative gram-positive cocci which are present in the colon as the normal flora in almost equal number of E. coli. They are also distributed in the environment where they can survive for a long time given their high tolerance to dryness (2-3). Enterococci have little potential for disease and lack strong toxins and notable pathogens, however, they can cause diseases such as bacteremia, endocarditis, and infections of surgical wounds, urinary tract, newborns, central nervous system, abdomen, and pelvis (2, 4-6). The main problem of nosocomial enterococcal infections is the emergence of multi-resistance to antibiotics (2). According to the national nosocomial infections surveillance system (NNIS), Enterococcus is the fourth causing agent of hospital infections (the third cause of bacteremia and the second cause of urinary tract infections) (7). About 90% of enterococcal infections in humans are caused by E. faecalis and the remaining 10% by
E. faecium (8). These strains are considered fecal. Other strains are seen with a very low percentage in clinical samples. It has been suggested recently that specific subsets of this species can be considered as environmental rather than fecal, in particular *E. casseliflavus, E. gallinarum*, and *E. mundii* (9).

Vancomycin was produced in 1958 for the treatment of staphylococcal infections, but was not significantly utilized until the late 1970s and outbreak of methicillin-resistant *Staphylococcus aureus* (10). Vancomycin was first used in clinical cases in 1972 (11). Vancomycin-resistant *Enterococci* were first seen in 1986 in Europe and in 1987 in USA, and then throughout the world, with an increasing detection thereafter (12). The mechanisms of resistance of *Enterococci* to antimicrobial agents, *i.e.* intrinsic (low-level resistance to penicillin, cephalosporins, and aminoglycosides) and acquired (resistance to glycopeptides), high concentrations of glycopeptides, high concentrations of aminoglycosides, are now of great importance and attention (7). No single factor shows a good activity against even glycopeptides-sensitive members in this genus (13). In clinical patients, treatment with a combination of agents active on the cell wall, such as penicillin or glycopeptide with aminoglycoside or cephalosporins with bactericidal activity, can be effective (13,14). Production of vaccines and immunotherapy are currently raised for the treatment of enterococcal infections (15-17). This study aimed to determine the prevalence of vancomycin-resistant *enterococci* in clinical samples of Shahid Mohammadi Hospital, in Bandar Abbas and to determine the pattern of antibiotic resistance in 2012.

Methods:

This descriptive study was performed on 54 patients admitted to Shahid Mohammadi Hospital of Bandar Abbas City for one year. There was no limit on age, gender, and cause of admission to be enrolled in this study. All samples were transferred to the laboratory of Microbiology, Faculty of Medicine of Bandar Abbas. They were then incubated on nutrient agar medium (Merck) for 24 hours at 37 °C. The grown bacteria were examined with gram stain and catalase test, and were confirmed through the tests of Bile Aesculin agar (Merck), TSB containing 6.5% salt (Merck), and growth at 45 °C. The genus of *Enterococcus* was identified with RapID STR System kit (Remel Company). The panel of this kit includes 10 wells and 14 tests. The tests are based on substrate analysis and reaction of the resulting products with indicators. Hemolysis should also be reported in addition to 14 tests performing for this kit. As a result, a total of 15 tests were evaluated. Since the diagnostic kit of RapID STR System cannot differentiate *Streptococcus durans*, *E. hirae*, *E. casseliflavus*, and *E. mundii*, these strains were identified through the motion and growth test at 45 °C (18). The resistance phenotype was determined through the disc diffusion method according to CLSI guidelines using the following discs; vancomycin 30 mg, ampicillin 10 mg, linezolid 30 mg, imipenem 10 mg, tigecycline 30 mg (Mast Company), ampicillin 10 mg, linezolid 30 mg (Mast Company), and trimethoprim (1.25) + sulfamethoxazole (23.75), cefotaxime 30 mg, gentamicin 10 mg, and cephalaxin 30 mg (HiMedia Company). Opacity of 0.5 McFarland was used to inoculate into Mueller Hinton agar (Mast). In this study, MIC was determined through E-Test or MIC Test Strip. After placing the E-Test on Mueller Hinton plate, the plates were incubated at 37 °C for 18 hours. The lowest concentration of antibiotic in the presence of which no growth was occurred was defined as MIC, and according to the Company’s guidelines, the minimum inhibitory concentrations greater than 32 µg/mL, 6-12 µg/mL, and less than 4 µg/mL were interpreted as resistant, intermediate, and sensitive, respectively. Strains of *E. faecalis* ATCC 29212 and *E. faecium* BM4147 were used as negative and positive controls, respectively. MIC was determined for all samples. Statistical analysis was performed with SPSS-19 using chi-square test and Fisher’s exact test when necessary, and p<0.05 was considered statistically significant.

Results:

Within a year, 54 different strains of *Enterococci* were obtained from clinical samples of patients who were 53.7% male and 46.3% female, with an age range of 9 months to 96 years, an average age of 52.27±3.119 years, and median of 57 years. The mean length of stay was...
8 days with a maximum of 59 days and a minimum of 1 day.

Table 1. Type and number of clinical samples collected (%)

<table>
<thead>
<tr>
<th>Clinical sample</th>
<th>Frequency</th>
<th>Urine</th>
<th>Wound</th>
<th>Peritoneal fluid</th>
<th>Blood</th>
<th>Trachea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
<td>42 (77.80%)</td>
<td>8 (14.80%)</td>
<td>2 (3.70%)</td>
<td>1 (1.85%)</td>
<td>1 (1.85%)</td>
</tr>
</tbody>
</table>

The majority of samples were obtained from urine (42) and the least from blood and peritoneal fluid (1) (Table 1).

The results of strain identification using kits and supplementary tests are shown in Table 2.

Table 2. The identified Enterococcus species

<table>
<thead>
<tr>
<th>Enterococcus species</th>
<th>Number</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. faecalis</td>
<td>38</td>
<td>70.40%</td>
</tr>
<tr>
<td>E. faecium</td>
<td>10</td>
<td>18.50%</td>
</tr>
<tr>
<td>E. hirae</td>
<td>3</td>
<td>5.55%</td>
</tr>
<tr>
<td>E. durans</td>
<td>1</td>
<td>1.85%</td>
</tr>
<tr>
<td>E. avium</td>
<td>1</td>
<td>1.85%</td>
</tr>
<tr>
<td>E. mundtii</td>
<td>1</td>
<td>1.85%</td>
</tr>
</tbody>
</table>

Regarding the pattern of antibiotic resistance, the highest resistance was against gentamicin and cephalaxin and the lowest against linezolid (Table 3).

Table 3. Enterococci antimicrobial resistance pattern

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Resistant</th>
<th>Semi-sensitive</th>
<th>Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linezolid</td>
<td>3.70%</td>
<td>0</td>
<td>96.30%</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>18.50%</td>
<td>0</td>
<td>81.50%</td>
</tr>
<tr>
<td>Ticoplanin</td>
<td>20.40%</td>
<td>0</td>
<td>79.60%</td>
</tr>
<tr>
<td>Imipenem</td>
<td>20.40%</td>
<td>0</td>
<td>79.60%</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>24.10%</td>
<td>3.70%</td>
<td>75.90%</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>57.40%</td>
<td>3.70%</td>
<td>38.90%</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>63%</td>
<td>0</td>
<td>37%</td>
</tr>
<tr>
<td>Cephalaxin</td>
<td>70.40%</td>
<td>0</td>
<td>29.60%</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>70.40%</td>
<td>0</td>
<td>29.60%</td>
</tr>
</tbody>
</table>

Based on the pattern of resistance to antibiotics, the prevalence of multi-drug resistance (MDR) was obtained, and the highest strains (33.33%) were resistant to three drugs (Fig. 1).

No significant relationship between strains of Enterococci and vancomycin resistance was found based on Chi-square statistical analysis (p=0.08).

Strains of vancomycin-resistant Enterococcus included E. faecalis with 6 strains (46.15%), E. faecium with 4 strains (30.78%), E. avium with one strain (7.69%), E. durans with one strain (7.69%), and E. hirae with one strain (7.69%).

Regarding vancomycin-resistant strains in hospital wards, 6 strains (46.15%) were from the internal ward, 5 strains from the outpatient department (38.47%), one strain (7.69%) from the burning ward, and one strain (7.69%) from the intensive care unit.
The most frequent resistant strains were from the urine samples with a frequency of 10 (76.93%).

Strains with high-level resistance to vancomycin have grown throughout the plate. Among the resistant strains, the minimum inhibitory concentration (MIC) was 48 in one strain, 64 in one strain, more than 256 in the remaining resistant strains which were grown throughout the plates (Table 4).

Table 4. Measurements of MIC by Vancomycin

<table>
<thead>
<tr>
<th>MIC (μg/mL)</th>
<th>MIC < 4</th>
<th>MIC 8-12</th>
<th>MIC > 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>41</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

Conclusion:

Studies performed in Iran have shown that Enterococci are the first cause of urinary tract infection among gram-positive cocci and the third cause of urinary tract infection in women in Iran after Escherichia coli and Klebsiella pneumoniae (19).

In our research, as expected, the most isolated strains were E. faecalis (70.4%) followed by E. faecium (18.5%). In most studies also, E. faecalis and E. faecium have been reported as the first and second causes, and the other strains were more or less similar to this study.

In a study by Fatholahzadeh et al. in 2006, the identified strains were E. faecalis (38%), E. faecium (25%), E. mundtii (25%), and E. raffinosus (12%) (20). In the study of Eini et al. in children with urinary tract infection, the strains were reported as E. faecalis (58%), E. faecium (30%), E. mundtii (9%), E. avium (1%), E. hirae (1%) and E. raffinosus (1%) (21).

The study of Eini et al. conducted in Tehran showed that E. faecalis and E. faecium accounted for the highest percentage, because these strains are fecal and other strains were environmental.

Although we are faced with a relative difference in the incidence, there exist similar strains in hospitals, except for E. raffinosus which was not found in the samples. However, regarding its small percentage, if sample collection duration and sample size increased, perhaps we would find this strain as well. In a study by Schouten et al. in Europe, the prevalence of Enterococcus strains was reported as follows: E. faecalis (83%), E. faecium (13.6%), E. gallinarum (1.20%), E. durans (0.71%), E. casseliflavus (0.53%), E. avium (0.46%), E. hirae (0.12%), E. mundtii (0.05%), and E. raffinosus (0.02%) (22). Schouten et al. conducted a study in 27 countries of Europe and found a greater variety of strains; this can be attributed to the extensive study performed in various European countries with large size sample. Perhaps if the number of samples and hospitals was reduced, the variety of the viruses would be decreased. Among 180 clinical samples, Mohammadi et al. found 128 strains of E. faecalis (71.1%) and 52 strains of E. faecium (28.9%) (23). In a study by Nouhi et al., out of 76 samples, 59.2%, 38.1%, and 2.7% were E. faecalis, E. faecium, and E. gallinarum, respectively (24). Strains of Enterococcus from clinical samples in a study by Guiney and Uriwin included 84.4% E. faecalis, 14.8% E. faecium, and 0.8% other species including E. casseliflavus, E. avium, and E. durans (25).

Unlike the results of the present study and a majority of research performed in Iran and abroad, Oskooe and Farrukh reported 17 strains of E. faecium and 15 strains of E. faecalis out 32 of strains (26). In their study, the number of strains of E. faecium and E. faecalis had a slight difference, and as mentioned earlier, the number of E. faecalis could be increased if the sample size increased.

The size of samples obtained from hospital wards varies in different studies, but urine samples usually formed the majority of clinical samples (18-23). In the present study, the rate of VRE was about 24%; while 34% of samples in the study of Ghafarpassand et al. (2007) performed on clinical samples of Shahid Beheshti Hospital were resistant to vancomycin (7). VRE prevalence in the studies of Stephen Fluit, and Hanbergor and Nilson was 28%, 10% and less than 1%, respectively. Resistance to vancomycin was reported 15.5% in the study of Rafiee et al. in Mofid Children’s Hospital (27). Unlike the present study, Salah et al. carried out their research on renal patients and strains of E. faecalis in 2008 through the disc diffusion method and found that 100% of strains...
were susceptible to vancomycin (26). In the study Fatholahzadeh et al. in 2006, about 7% of the isolates were resistant to vancomycin (20). Harris et al. reported a VRE prevalence of 10% (21).

Increased frequency of vancomycin resistant Enterococci isolated from clinical samples is consistent with increasing use of antibiotics to which Enterococci are naturally resistant. In particular, consumption of cephalosporins and quinolones which are largely effective against gram-negative bacteria has significantly increased. These antibiotics may pave the way to the advent of Enterococcus as hospital-acquired pathogen. It is difficult to prove this hypothesis, but circumstantial evidence is compelling. For example, many controlled studies have shown that nosocomial enterococcal infections are related to treatment with beta-lactams antibiotic (imipenem) and quinolone (25).

In this study, the greatest resistance was observed against cephalexin and gentamicin, and linezolid and imipenem were the best treatment options. In a study by Ghasemi et al. in Shahid Beheshti Hospital and Shabikhani Maternity Hospital in 2008 carried out on strains of E. faecalis isolated from clinical samples, resistance to gentamicin, ampicillin, imipenem, and vancomycin was reported as 38.7%, 11.3%, 10.4%, and 4.7%, respectively. Multi-drug resistant phenotype was observed in 37.7% of strains (28). In this study, gentamicin and cephalaxin had the highest rate of resistance, but vancomycin had not the least resistance. In most studies, same as the present research, linezolid was the least resistant (linezolid resistance pattern was not reported by Ghasemi et al.). In the study of Ghafarpassand et al. in 2007 on clinical samples in Shahid Beheshti Hospital, 60%, 44%, 34%, and 33% of the strains were resistant to ampicillin, gentamicin, vancomycin, and linezolid, respectively (7). Resistance to ampicillin, vancomycin, and linezolid in the study of Ghafarpassand et al. was higher than the present research which can be due to difference in the consumption of drugs in hospitals, the resistance rate of the organism in the hospital, and hospital environments. In this study, the rate of vancomycin-resistant enterococci was high, and requires controlling and preventive measures.

Acknowledgment:

The author would like to express his gratitude to the Deputy of Research and Technology of Bandar Abbas Faculty of Medical Sciences for financial support and supplying resources.

References:

Vancomycin Resistant Enterococci, E-Test

بررسی فراوانی انتروکوکهای مقاوم به ونکومایسین جدا شده از نمونه‌های بالینی

یمی‌رمان شیعه محمدی به روش E-Test

زینب قلندرزاده دریایی 1 دکتر صدیقه جوادپور 2 محمد کارگر 3

1 دانشجوی کارشناسی ارشد میکروبیولوژی، مرکز تحقیقات بیماری‌های عفونی و کسب‌وری، دانشگاه علوم پزشکی میکروبیولوژی. دانشکده آزاد اسلامی، واحد جهرم ملکه پزشک هرمزگان سال توزیع شماره چهارم مهر و آبان 94 صفحات 439-442

چکیده

انتروکوک‌ها باکتری‌های کوکوئید گرم مثبت هستند که به صورت فلور نرمال در دستگاه گوارش در انسان، بسیاری از پستانداران و پرندگان وجود دارند و علاوه بر آن در محیط پراکنده مستند انتروکوک مقاوم به ونکومایسین (VRE) مشکل مهمی در درمان بیماری‌های مختلف جهان است. هدف از این پژوهش، بررسی مقاومت‌های فیزیولوژی انتروکوک و الگوی حساسیت دارویی در نمونه‌های بالینی بوده است.

روش کار: این پژوهش به صورت مقطعی-توصیفی بر روی 75 نمونه انتروکوک در سال 1397 انجام شد. برای شناسایی گونه‌های مختلف انتروکوک از کیت تشخیص RapID STR System استفاده شد. حساسیت آنتی‌بیوتیک با روش MIC ونکومایسین به روش E-Test تعیین گردید.

نتایج:

75 نمونه از انتروکوک سویه 54/14% به گونه فیکالیس، 74/79% به گونه فیسیوم، 2/77% به گونه هیرا، 97/7% به گونه موندتی، 97/7% به گونه دورانس و 97/7% به گونه آویوم اشاره داشتند. مقدار MIC ونکومایسین از نمونه‌های بالینی به‌طور میانگین 32 µg/ml بود. بیشترین مقاومت را با 3/7/53% به لاینزولید، 32/7/49% به سفرنیکس، 32/7/49% به تنیولوم، 32/7/49% به اینزرکس و 32/7/49% به کلینژول آفرینی کردند. بیشترین مقاومت با 97/7% به لاینزولید، 97/7% به سفرنیکس، 97/7% به اینزرکس و 97/7% به کلینژول آفرینی آمده بود.

نتیجه‌گیری: به دلیل فراوانی VRE جادویهای آنتی‌بیوتیک و بیمارستان‌های ضرورت انجام اقدامات کنترلی وجود دارد.

کلمات کلیدی: انتروکوک، مقاوم به ونکومایسین، آنتی‌بیوتیک، بیمارستان

Downloaded from hmj.hums.ac.ir at 8:20 IRST on Sunday January 8th 2017